

3.3V, High ESD Protected ,1Mbps High Speed CAN Transceiver

FEATURES

- Operates with a single 3.3V supply
- ➢ Compatible with ISO 11898-2 standard
- > Bus pin ESD protection exceeds ± 16 kV HBM
- ➢ Up to 120 nodes can be connected
- Adjustable drive conversion time can improve radiation performance
- Designed for data rates up to 1 Mbps
- Thermal Shutdown Protection
- Open circuit fail-safe design
- Glitch free power up and power down protection for hot plugging applications

PRODUCT APPEARANCE

Provide Green and Environmentally Friendly Lead-free package

DESCRIPTION

The SL65HVD232 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the 3.3V μ Ps, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and climate control (HVAC), telecom and base station control and status. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Supply voltage	V _{cc}		3	3.6	V
Maximum transmission rate	1/t _{bit}	Non return to zero code	1		Mbaud
CANH/CANL input or output voltage	V_{can}		-16	+16	V
Bus differential voltage	V_{diff}		1.5	3.0	V
Virtual junction temperature	T _{amb}		-40	125	°C

PIN CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	DESCRIPTION			
1	D	CAN transmit data input (LOW for dominant and HIGH for recessive bus states), also called TXD, driver input			
2	GND	Ground connection			
3	VCC	Transceiver 3.3V supply voltage			
4	R	CAN receive data output (LOW for dominant and HIGH for recessive bus states), also called RXD, receiver output			
5	NC	Not connected			
6	CANL	Low level CAN bus line			
7	CANH	High level CAN bus line			
8	NC	Not connected			

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	V _{CC}	-0.3~+6	V
DC voltage on D/R pins	D, R	-0.5~VCC+0.5	V
Voltage range at any bus terminal (CANH, CANL)	CANL, CANH	-18~18	V
Transient voltage on pins 6, 7	V _{tr}	-25~+25	V
Receiver output current	Io	-11~11	mA
Storage temperature	T _{stg}	-40~150	°C
Virtual junction temperature	Tj	-40~125	°C
Welding temperature range		300	°C
Continuous total power	SOP8	400	mW
dissipation	DIP8	700	mW

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

DRIVER ELECTRICAL CHARACTERISTICS

SYMBOL	PARAME	TER	CONDITION	MIN.	ТҮР.	MAX.	UNIT
	Output	CANH	VI=0V, R _L =60Ω	2.45		VCC	
V _{O(D)}	voltage (Dominant)	CANL	<u>Fig 1, Fig 2</u>	0.5		1.25	V
V	Differential	output	$VI=0V, R_{L}=60\Omega$ <u>Fig 1</u>	1.5	2	3	V
V _{OD(D)}	voltage (Dor	minant)	VI=0V, R_L =60 Ω , R_s =0V <u>Fig 3</u>	1.2	2	3	V
	Output	CANH	VI=3V, R_L =60 Ω		2.3		
V _{O(R)}	voltage (Recessive)	CANL	Fig 1		2.3		V
V	Differential	output	VI=3V	-0.12		0.012	V
V _{OD(R)}	voltage (Rec	cessive)	VI=3V, No load	-0.5		0.05	V
I _{IH}	High level currer	•	VI=2V	-30			μΑ
I _{IL}	Low level currer	•	VI=0.8V	-30			μΑ
			CANH=-2V	-250			
т	Short circuit	t output	CANH=7V			1	
Ios	currer	nt	CANL=-2V	-1			mA
			CANL=7V			250	
Со	Output capa	citance	See receiver				
I	Supply or	rrant	V _I =0V (Dominant), No load		10	17	mA
I _{CC}	Supply cu	urent	V _I =VCC (Recessive), No load		10	17	mA

(VCC=3.3V±10% and Temp=TMIN~TMAX unless specified otherwise; typical in VCC=+5V and Temp=25°C).

DRIVER SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
	Propagation delay	R=0, short circuit <u>Fig 4</u>		35	85	
t plh	time (low-to-high level)	R=10kΩ		70	125	ns
		R=100kΩ		500	870	

SYMBOL	PARAMETER	CONDITION	MIN.	ТҮР.	MAX.	UNIT
	Propagation delay	R=0, short circuit <u>Fig 4</u>		70	120	
t phl	time	R=10kΩ		130	180	ns
	(high-to-low level)	R=100kΩ		870	1200	
	Pulse skew	R=0, short circuit <u>Fig 4</u>		35		
tsk(p)	(t _{PLH} - t _{PHL})	R=10kΩ		60		ns
		R=100kΩ		370		
	Differential output	R=0, short circuit <u>Fig 4</u>	25	50	100	
tr	signal rise time	R=10kΩ	80	120	160	ns
		R=100kΩ	600	800	1200	
	Differential output	R=0, short circuit <u>Fig 4</u>	40	55	80	
tr	signal fall time	R=10kΩ	80	125	150	ns
		R=100kΩ	600	825	1000	

 $(VCC=3.3V\pm10\% \text{ and Temp}=TMIN\sim TMAX \text{ unless specified otherwise; typical in }VCC=+5V \text{ and Temp}=25^{\circ}C).$

RECEIVER ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	ТҮР.	MAX.	UNIT
V _{IT+}	Positive-going input threshold voltage	Table 1		750	900	mV
VIT-	Negative-going input threshold voltage	Table 1	500	650		mV
V _{hys}	Hysteresis voltage	VIT+- VIT-		100		mV
V _{OH}	High-level output voltage	-6V <v<sub>ID< 500mV, I_O =-8mA, <u>Fig 5</u></v<sub>	2.4			V
V _{OL}	Low-level output voltage	$900mV < V_{ID} < 6V$ $I_0 = 8mA, Fig 5$			0.4	V
Ii		VIH=7V, VCC=0V	100		350	μΑ
Ii	Dug innut sumont	VIH=7V, VCC=3.3V	100		250	μΑ
Ii	Bus input current	VIH=-2V, VCC=0V	-100		-20	μΑ
Ii		VIH=-2V, VCC=3.3V	-200		-30	μΑ
Ri	Input resistance	ISO 11898-2 standard	20	35	50	kΩ

SYMBOL	PARAMETER	CONDITION	MIN.	ТҮР.	MAX.	UNIT
R _{diff}	Differential input resistance	ISO 11898-2 standard	40		100	kΩ
Ci	Input capacitance	ISO 11898-2 standard		40		pF
C _{diff}	Differential input capacitance	ISO 11898-2 standard		20		pF
ICC	Supply current	See driver				

(VCC=3.3V±10% and Temp=TMIN~TMAX unless specified otherwise; typical in VCC=+5V and Temp=25°C).

RECEIVER SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	ТҮР.	MAX.	UNIT
tplH	Propagation delay time (low-to-high level)	<u>Fig 6</u>		35	50	ns
t _{PHL}	Propagation delay time (high-to-low level)	<u>Fig 6</u>		35	50	ns
t _{sk}	Pulse skew	t _{PHL} - t _{PLH}			10	ns
t _r	Output signal rise time	<u>Fig 6</u>		1.5		ns
t _f	Output signal fall time	<u>Fig 6</u>		1.5		ns

 $(VCC=3.3V\pm10\%$ and Temp=TMIN~TMAX unless specified otherwise; typical in VCC=+5V and Temp=25°C).

DEVICE SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
	Loop delay 1, driver input to receiver output, Recessive to Dominant	R=0, short circuit <u>Fig 7</u>		70	115	
t(LOOP1)		R=10kΩ		105	175	ns
		R=100kΩ		535	920	
	Loop delay 2, driver input to receiver output, Dominant to	R=0, short circuit <u>Fig 7</u>		100	135	
t(loop2)		R=10kΩ		155	185	ns
	Recessive	R=100kΩ		830	990	

(VCC=3.3V±10% and Temp=TMIN~TMAX unless specified otherwise; typical in VCC=+5V and Temp=25°C).

OVER TEMPERATURE PROTECTION

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Shutdown junction	T _{i(sd)}		155	165	180	°C
temperature	j(su)					

(VCC=3.3V±10% and Temp=TMIN~TMAX unless specified otherwise; typical in VCC=+5V and Temp=25°C).

SUPPLY

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Dominant power consumption	I _{CC}	V _I =0V, LOAD=60Ω		50	70	mA
Recessive power consumption	I _{CC}	V _I =VCC, No load		6	10	mA

(VCC=3.3V±10% and Temp=TMIN~TMAX unless specified otherwise; typical in VCC=+5V and Temp=25°C).

FUNCTION TABLE

V _{IC}	V _{ID}	V _{CANH}	V _{CANL}	R OUTP	UT
-2 V	900mV	-1.55V	-2.45V	L	
7 V	900mV	8.45V	6.55V	L	VOI
1 V	6V	4V	-2V	L	VOL
4 V	6V	7V	1V	L	
-2 V	500mV	-1.75V	-2.25V	Н	
7 V	500mV	7.25V	6.75V	Н	VOU
1 V	-6V	-2V	4V	Н	VOH
4 V	-6V	1V	7V	Н	
Х	Х	Open	Open	Н	

Table 1 Receiver characteristics over common mode (V_(RS)=1.2V)

(1) H=high level; L=low level; X=irrelevant.

Table 2 Driver functions

INPUT D	OUTP	Bus state	
	CANH	CANL	
L	Н	L	Dominant
Н	Z	Z	Recessive
X	Z	Z	Recessive

(1) H=high level; L=low level; Z=high impedance.

Table 3 Receiver functions

V _{ID} =CANH-CANL	Rs	OUTPUT R
$V_{ID} \ge 0.9 V$	Х	L
$0.5 < V_{ID} < 0.9 V$	Х	?
$V_{ID} \leq 0.5 V$	Х	Н
Open	Х	Н

(1) High level; L=low level; ?=uncertain; X=irrelevant.

TEST CIRCUIT

ADDITIONAL DESCRIPTION

1 Brief description

The SL65HVD232 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the $3.3V \mu Ps$, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and climate control (HVAC), telecom and base station control and status. The devices are designed for data rates up to 1 Mbps, and are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

2 Short-circuit protection

A current-limiting circuit protects the driver output stage of the SL65HVD232 against short-circuits to positive and negative supply voltage. When short-circuit occurs the power dissipation increases but the short-circuit protection function will prevent destruction of the driver output stage.

3 Over-temperature protection

The SL65HVD232 has an integrated over -temperature protection circuit. If the junction temperature exceeds approximately 160°C, the current in the driver stage will decrease. Because the driver stage dissipates most of the power, the power dissipation and temperature of the IC is reduced. All other parts of the chip remain operational.

4 Electrical transient protection

Electrical transients often occur in automotive applications. The CANH and CANL of the SL65HVD232 are also protected against electrical transients.

5 Control mode

The SL65HVD232 provides a default operation mode: high -speed mode.

The high-speed mode of operation is commonly employed in industrial applications. High-speed allows the output to switch as fast as possible with no internal limitation on the output rise and fall slopes.

SOP8 DIMENSIONS

PACKAGE SIZE			
SYMBOL	MIN./mm	TYP./mm	MAX./mm
А	1.40	-	1.80
A1	0.10	-	0.25
A2	1.30	1.40	1.50
b	0.38	-	0.51
D	4.80	4.90	5.00
Е	3.80	3.90	4.00
E1	5.80	6.00	6.20
e		1.270BSC	
L	0.40	0.60	0.80
с	0.20	-	0.25
θ	0°	-	8°

DIP8 DIMENSIONS

SYMBOL	MIN./mm	TYP./mm	MAX/mm
А	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2		2.54TYP	
A3		1.525TYP	
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60

ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SL65HVD232DR	SOP8	Tape and reel
SL65HVD232P	DIP8	Tube

SOP8 is packed with 2500 pieces/disc in braided packing. DIP8 is packed with 50 pieces/disc in tubed packing.

REFLOW SOLDERING

Parameter	Lead-free soldering conditions	
Ave ramp up rate $(T_L \text{ to } T_P)$	3°C/second max	
Preheat time ts	60-120 seconds	
$(T_{smin}=150^{\circ}C \text{ to } T_{smax}=200^{\circ}C)$		
Melting time $t_L(T_L=217^{\circ}C)$	60-150 seconds	
Peak temp T _P	260-265°C	
5° C below peak temperature t_P	30 seconds	
Ave cooling rate $(T_P \text{ to } T_L)$	6°C/second max	
Normal temperature 25°C to peak temperature	8 minutes max	
T _P time	o minutes max	