

SCHOTTKY BARRIER DIODES

FEATURES:

- * For general purpose applications
- * The SD103 series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring.
- * The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing and coupling diodes for fast switching and low logic level applications.
- * These diodes are also available in the MiniMELF case with type designations LL103A thru LL103C.

Dimensions in millimeters

Maximum Ratings and Thermal Characteristics ($T_c = 25$ °C unless otherwise noted)

Parameter		Symbol	Value	Unit	
Repetitive Peak Reverse Voltage	SD103AWS		40	V	
	SD103BWS	V _{RRM}	30		
	SD103CWS		20		
Maximum Single Cycle Surge 10 µs Square Wave		I _{FSM}	2	А	
Power Dissipation (Infinite Heat Sink)		P _{tot}	150 ⁽¹⁾	mW	
Thermal Resistance Junction to Ambient Air		$R_{ ext{ heta}JA}$	650 ⁽¹⁾	°C/W	
Junction Temperature		TJ	125 ⁽¹⁾	°C	
Storage temperature range		T _{STG}	-55 to + 150	°C	

Electrical Characteristics (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Test Condition	Min	Тур	Max	Unit
Reverse Current	SD103AWS		V _R = 30 V	-	-	5	
	SD103BWS	I _R	V _R = 20 V	-	-	5	μA
	SD103CWS		V _R = 10 V	-	-	5	
Forward Voltage Drop		V _F	$I_F = 20 \text{mA}$	-	-	0.37	V
			$I_F = 200 \text{mA}$	-	-	0.60	
Junction Capacitance		Ctot	$V_R = 0 V, f = 1MHz$	-	50	-	pF
Reverse Recovery Time		Trr	$I_F = I_R = 50$ mA to 200mA recover to $0.1I_R$	-	10	-	ns

Note:

(1) Valid provided that electrodes are kept at ambient temperature.

RATING AND CHARACTERISTIC CURVES (SD103AWS - SD103CWS)

Blocking voltage deration versus temperature at various average forward currents

Typical high current forward conduction curve tp = 300ms, duty cycle = 2%

Typical variation of reverse current at various temperatures

